Advanced High Energy Li-lon Cell for PHEV and EV Applications

Jagat Singh 3M Company June 18th, 2014

Project ID # ES210

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start Date: 10/01/2013
- End Date:09/30/2015
- Percent Complete: 15%

Budget

- Total Project Funding
 - •DOE* Share: \$3,000,043
 - Contractor Share: \$774,314
- Funding Received in FY13: \$0
- •Funding for FY14: \$494,198

*3M and the team appreciates the support and funding provided by DOE

Barriers

- Cycle Life
- Specific Energy
- Cost

Partners

- •Collaboration:
 - •GM: Dr. Meng Jiang
 - •Umicore: Wendy Zhou
 - Leyden: Dr. Marie Kerlau
 - ARL: Dr. Richard Jow
 - LBNL: Dr. Gao Liu
- Interaction
 - Dalhousie University
 - •ANL: Deliverable Testing
- Project Lead:3M

Relevance

<u>Objective</u>

A collaborative team approach to leverage crucial Li-ion battery technologies and expertise to help enable

- Advanced High Energy Li-Ion Cell
- Superior Performance Envelope
 - Long Cycle Life,
 - High Power Capability,
 - Wide Operating Temperature
- Lower Cost (\$/Wh)

Wh/kg (Wet Laminate)

Wh/L (Wet Laminate)

Milestone

Month / Year	Milestone	Status					
Phase I (Oct 1 st , 2013 to Sept 30 th , 2014)							
Dec / 2013	Scale up baseline anode and cathode material	✓					
Jan / 2014	Sample baseline anode and cathode material powder	√					
March / 2014	Sample internally baseline electrodes and 18650 for testing	√					
April / 2014	Baseline deliverables	WIP					
	Phase II (Oct 1st, 2014 to Sept 30th, 2015)						
Sept / 2015	Final deliverables						

Approach / Strategy

Synergistic Team Approach to Address Vital Components.

Approach / Strategy

1. Develop Advanced Material to meet Energy Targets

Si Alloy Anode

Scalable process to develop high capacity Si alloy with stable microstructure

Binder - Si Anode

Innovative conductive binder for superior Si anode composite

Advanced Electrolyte / Additives

SEI and high voltage stability to enhance performance

High Energy NMC Cathode

Develop composition with high Wh/kg to increase cell energy

2. Characterize Performance in 18650 / Pouch Cells

Electrode Formulation Study

Tune Formation Protocol

Evaluate Dispersion, Roll to Roll Coating and Drying

Gap Analysis and Diagnostics

Energy and Life Validation

3M Si Alloy Anode Development

Baseline Material

3M Si Alloy Anode shows excellent cycling and coulombic efficiency compared to Si nano-particles

Advanced Material

Develop Si alloy to target

- •20% increase in mAh/g
- •10% increase in mAh/cc
- High efficiency
- Surface stability

Si Alloy	BET (m²/g)	1st lithiation (mAh/g)	1 st delithiation to 0.9V (mAh/g)	First Cycle Efficiency (%)
Candidate B	1.9	1020	910	89.2
Candidate A	4.3	1330	1160	87.0
Baseline	3.5	1050	900	85.7

Exploring Si Alloy Compositions to meet Energy Targets.

3M

Technical Accomplishments and Progress

Si Alloy Anode Scale Up

- A scalable and cost effective synthesis route for Si Alloy anode manufacturing
- Full scale equipment operational in USbased manufacturing (Cottage Grove, MN)

Successfully Scaled Baseline Si Alloy Anode for Evaluation in Full Cells.

Technical Accomplishments and Progress Binder Development for 3M Si Alloy Anode

10% binder, 90% 3M anode; Rate: 100 mA/g; Cut-off voltage: 0.01V~1V

Loading: 1.49 mg anode material on this 1.6 cm2 electrode

~0.9 mg anode/cm2

Electrolyte: EC/DMC/DMC=1, 10% FEC, 1M LiPF6

Observed Significant Improvement in Performance Binder Scale Up Trials in Progress at 3M.

High Energy NMC Cathode Development

Material		CS 126M		New CS	
Lot#:		PP121113Q		PP140217H	
Electrochemical Performance		Capacity (mAh/g)	Gravimetric Energy (mWh/g)	Capacity (mAh/g)	Gravimetric Energy (mWh/g)
2.5-4.8V	1st charge (C/20)	273		271	
	1st Discharge (C/20)	227	875	233	889
	Irreversible loss (%)	16.7		13.9	
2.5-4.7V	C/2	182	687	176	653
	2C	155	564	141	507
	5C	129	443	113	388

Identified Material Composition with Reduced Irreversible Capacity. Also Exploring other Compositions.

umicore Rechargeable Battery Materials

Technical Accomplishments and Progress

High Energy NMC Cathode Scale Up

Successfully Scaled and Sampled >30 kg of Cathode Material. Process Optimization in Progress.

Electrolyte Screening (Full Cell)

Discharge Capacity vs. Cycles Si alloy/NMC; 4.2-2.8V; 25»Ô; C/5

Both L-20446 and L-19869 are 3M's proprietary fluoro chemicals.

Identified Electrolytes to Help Improve Cycle Life of Si Anode and High Voltage Stability with HE NMC Cathode.

Electrolyte Additive Screening (3-Electrode Cell)

Multiple Additive Screening in Progress.

Cycle Life of 650Wh/L (C/10) Pouch Cell

Leveraging Leyden's Cell Design Methodology to Build Prototype Pouch Cells.

- Newman-type Pseudo-2D model: x and r
- Ohm's law, Fick's law, and Butler-Volmer kinetics
- Model formulated in COMSOL Multiphysics®
 - Two active material model for anode
 - Anode thickness and particle size depends on the state of charge
- Half-cell model for tuning anode properties
- Full-cell model for evaluating performance

Modeling of the Electrochemical Couple in Progress.

Electrochemical Model: Multiple Active Materials

Anode

Ohm's law for solid phase

$$\frac{\partial}{\partial x} \left(-K_{eff_a}^{(1)} \frac{\partial}{\partial x} \phi_a^{(1)} \right) = -\sum_{l=1}^{N} a_{a,l} i_{n_{a,l}}$$

Ohm's law for solution phase

$$\frac{\partial}{\partial x} \left(-K_{eff_a}^{(2)} \frac{\partial}{\partial x} \phi_a^{(2)} + \frac{2RT}{F} K_{eff_a}^{(2)} (1 - t_+) \frac{\partial}{\partial x} \ln C_a^{(2)} \right) = \sum_{l=1}^{N} a_{a,l} i_{n_{a,l}} \frac{\partial}{\partial x} \left(-K_{eff_e}^{(2)} \frac{\partial}{\partial x} \phi_e^{(2)} + \frac{2RT}{F} K_{eff_e}^{(2)} (1 - t_+) \frac{\partial}{\partial x} \ln C_e^{(2)} \right) = 0 \frac{\partial}{\partial x} \left(-K_{eff_e}^{(2)} \frac{\partial}{\partial x} \phi_c^{(2)} + \frac{2RT}{F} K_{eff_e}^{(2)} (1 - t_+) \frac{\partial}{\partial x} \ln C_e^{(2)} \right) = \sum_{l=1}^{N} a_{c,l} i_{n_{c,l}} i$$

Material balance in solution phase

$$\varepsilon_{a}^{(2)} \frac{\partial C_{a}^{(2)}}{\partial t} + \frac{\partial}{\partial x} \left(-D_{eff_{a}}^{(2)} \frac{\partial}{\partial x} C_{a}^{(2)} \right) = \frac{\left(1 - t_{+}\right)}{F} \sum_{l=1}^{N} a_{a,l} i_{n_{a,l}}$$

Material balance in solid phase (i = 1 to N)

$$\begin{split} \frac{\partial C_{a,l}^{(1)}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(-r^2 D_{a,l}^{(1)} \frac{\partial}{\partial r} C_{a,l}^{(1)} \right) &= 0 \\ r &= 0 \quad \frac{\partial C_{a,l}^{(1)}}{\partial r} &= 0 \\ r &= R_{p_{a,l}} \quad -D_{a,l}^{(1)} \frac{\partial C_{a,l}^{(1)}}{\partial r} &= j_{n_{a,l}} = \frac{i_{n_{a,l}}}{F} \end{split}$$

Butler-Volmer equation for intercalation reaction

$$\begin{split} i_{n_{a,l}} &= i_{0_{a,l}} \left\{ \exp \left(\frac{F}{2RT} \eta_{a,l} \right) - \exp \left(-\frac{F}{2RT} \eta_{a,l} \right) \right\} \\ i_{0_{a,l}} &= k_{0_{a,l}} \sqrt{C_a^{(2)} \left(C_{\max_{a,l}}^{(1)} - C_{s_{a,l}}^{(1)} \right) C_{s_{a,l}}^{(1)}} \\ \eta_{a,l} &= \phi_a^{(1)} - \phi_a^{(2)} - V_{0_{a,l}} \end{split}$$

Electrolyte/Separator

Ohm's law for solution phase

$$\frac{\partial}{\partial x} \left(-K_{eff_e}^{(2)} \frac{\partial}{\partial x} \phi_e^{(2)} + \frac{2RT}{F} K_{eff_e}^{(2)} (1 - t_+) \frac{\partial}{\partial x} \ln C_e^{(2)} \right) = 0$$

Material balance in solution phase

$$\varepsilon_e^{(2)} \frac{\partial C_e^{(2)}}{\partial t} + \frac{\partial}{\partial x} \left(-D_{eff_e}^{(2)} \frac{\partial}{\partial x} C_e^{(2)} \right) = 0$$

Model formulated in COMSOL®

Cathode

Ohm's law for solid phase

$$\frac{\partial}{\partial x} \left(-K_{eff_c}^{(1)} \frac{\partial}{\partial x} \phi_c^{(1)} \right) = -\sum_{l=1}^{N} a_{c,l} i_{n_{c,l}}$$

Ohm's law for solution phase

$$\frac{\partial}{\partial x} \left(-K_{eff_c}^{(2)} \frac{\partial}{\partial x} \phi_c^{(2)} + \frac{2RT}{F} K_{eff_c}^{(2)} \left(1 - t_+ \right) \frac{\partial}{\partial x} \ln C_c^{(2)} \right) = \sum_{l=1}^{N} a_{c,l} i_{n_c}$$

Material balance in solution phase

$$\varepsilon_{c}^{(2)} \frac{\partial C_{c}^{(2)}}{\partial t} + \frac{\partial}{\partial x} \left(-D_{\text{eff}_{c}}^{(2)} \frac{\partial}{\partial x} C_{c}^{(2)} \right) = \frac{\left(1 - t_{+}\right)}{F} \sum_{l=1}^{N} a_{c,l} i_{n_{c,l}}$$

Material balance in solid phase (i = 1 to N)

$$\begin{split} \frac{\partial C_{c,l}^{(1)}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(-r^2 D_{c,l}^{(1)} \frac{\partial}{\partial r} C_{c,l}^{(1)} \right) &= 0 \\ r &= 0 \quad \frac{\partial C_{c,l}^{(1)}}{\partial r} &= 0 \\ r &= R_{p_{c,l}} \quad -D_{c,l}^{(1)} \frac{\partial C_{c,l}^{(1)}}{\partial r} &= j_{n_{c,l}} = \frac{i_{n_{c,l}}}{F} \end{split}$$

Butler-Volmer equation for intercalation reaction (i = 1 to N)

$$\begin{split} i_{n_{c,l}} &= i_{o_{c,l}} \left\{ \exp \left(\frac{F}{2RT} \eta_{c,l} \right) - \exp \left(-\frac{F}{2RT} \eta_{c,l} \right) \right\} \\ i_{0_{c,l}} &= k_{0_{c,l}} \sqrt{C_c^{(2)} \left(C_{\max_{c,l}}^{(1)} - C_{s_{c,l}}^{(1)} \right) C_{s_{c,l}}^{(1)}} \\ \eta_{c,l} &= \phi_c^{(1)} - \phi_c^{(2)} - V_{0_{c,l}} \end{split}$$

- Superscripts (1) and (2) refer to solid and solution phases, respectively.
- Subscripts a, e and c refer to anode, electrolyte/separator and cathode regions, respectively.
- Subscript i (= 1 to N) refers to different active materials

Baseline Cell Design

Baseline Design Shows Energy Improvement and Good Rate Capability.

Responses to Previous Year Reviewers' Comments

- N/A
- Project Awarded Fall 2013

Collaboration and Coordination

3M

 Sample Electrodes (ARL, Leyden, GM), Si Alloy Anode Powder (Leyden, GM, LBNL), High Energy NMC Cathode Powder (Leyden, GM) and Cells (GM).

ARL

Develop and Sample Electrolyte and Additives (3M, Leyden).

GM

Evaluate, Analyze and Diagnose Cells (3M, Leyden).

LBNL

- Optimize and Evaluate Binder Chemistry for Si Alloy Anode (3M).
- Binder Scale up (3M) for Testing in 18650 and Pouch Cells.

Leyden Energy

Optimize Composite Electrodes and Pouch Cells. Sample Cells (GM, 3M).

Umicore

Optimize Process and Scale Up Cathode Material. Sample Materials (3M).

Remaining Challenges / Barriers

- Si Alloy Anode
 - Full Cell Capacity Retention and Expansion over Life
- Binder: Si Alloy Anode
 - Binder characterization in 18650 / Pouch Cells
- High Energy NMC Cathode
 - Voltage Stability over Life
- Electrolyte and Additive
 - High Voltage Stability with Cathode
 - Stable SEI formation with Anode
- Material Production
 - Process Optimization
- 18650 / Pouch cell
 - Energy (Wh/kg and Wh/l)
 - Performance over Life

Proposed Future Work

Si Alloy Anode

Develop and Down Select Anode Composition and Particle Morphology

Binder: Si Alloy Anode

Optimize Binder Chemistry for Si Alloy Anode

HE NMC Cathode Material

Develop and Down Select Cathode Composition and Particle Morphology

Electrolyte and Additives

Identify Materials to Improve Active Material Performance

Material Production

Scale up Materials in Commercially Viable Processes

18650 / Pouch Cell

- Optimize Cell Design and Electrode Formulation and Processing.
- Benchmark and Optimize Cell Performance

Summary

Initiated Collaborative Team R&D

- Anode and Cathode material development
- Binder development at LBNL on 3M Si Alloy Anode
- Cell modeling and preliminary cell testing at GM
- Electrolyte and Additive screening at ARL
- Preliminary cell assembly activities at Leyden

Successful Scaled up Baseline Active Materials

- High Energy NMC
- Si Alloy Anode

Initiated Full Cell Testing of Baseline Materials

- Started Characterization cycles at 3M and GM
- Initiated Pouch Cell Optimization at Leyden
 - Formation optimization
 - Electrolyte Study

